US009219912B2

a2z United States Patent (10) Patent No.: US 9,219,912 B2
He et al. 45) Date of Patent: Dec. 22, 2015
(54) CODING OF RESIDUAL DATA IN (58) Field of Classification Search
PREDICTIVE COMPRESSION CPC ... HO4N 19/61; HO4N 19/63; HO4N 19/176;
HO4N 19/46; HO4N 19/13; HO4N 19/52;
(71) Applicant: BlackBerry Limited, Waterloo (CA) HO4N 19/59; HO4N 19/615; HO4N 19/00696;
HO4N 19/105; HO4N 19/19; HO4N 19/34;
(72) Inventors: Dake He, Waterloo (CA); Jin Meng, HO4N 19/00278; HO4N 19/11; HO4N 19/124;
Waterloo (CA) HO4N 19/109; HO4N 19/00569; HO3M 7/40;
HO03M 7/30; HO3M 7/3068; HO3M 7/3075
(73) Assignee: BlackBerry Limited, Waterloo, ON USPC e ssesssessenens 382/232
(CA) See application file for complete search history.
(*) Notice: Subject to any disclaimer, the term of this (56) References Cited
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. U.S. PATENT DOCUMENTS
. 8,340,181 B2* 12/2012 Hancccccevennne 375/240.12
(1) Appl. No.: 14/314,792 2003/0081850 Al 52003 Karczewicz et al.
(22) Filed: Jun. 25,2014 (Continued)
(65) Prior Publication Data FOREIGN PATENT DOCUMENTS
US 2014/0307778 Al Oct. 16, 2014 WO 2010/091503 8/2010
Related U.S. Application Data OTHER PUBLICATIONS
(63) Continuation of application No. 13/334,345, filed on Office Action issued in U.S. Appl. No. 13/334,330 on Nov. 26, 2013,
Dec. 22, 2011, now Pat. No. 8,768,080. 6 pages.
Continued
(60) Provisional application No. 61/429,631, filed on Jan. (Continued)
4,2011.
Primary Examiner — Ali Bayat
(51) Imnt.ClL (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
GO6K 9/36 (2006.01)
HO4N 19/176 (2014.01) (57) ABSTRACT
HO4N 19/50 (2014.01) Encoding input data includes: generating a first block of
HO4N 19/61 (2014.01) coefficients based on a transform performed on a residual
HO4N 197124 (2014.01) block of data for multiple pixels; generating reference infor-
plep g 2
Ho4N 19721 (2014.01) mation based on a reference block of data corresponding to
(52) US.CL the residual block of data; and determining losslessly decod-
CPC ... HO4N 19/00278 (2013.01); HO4N 19/124 able code values representing the first block of coeficients

(2014.11); HO4N 19/176 (2014.11); HO4N
19/21 (2014.11); HO4N 19/50 (2014.11); HO4N
19/61 (2014.11)

based on the reference information.

22 Claims, 9 Drawing Sheets

100

%

US 9,219,912 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0232454 Al
2006/0257037 Al

10/2006 Cha et al.
11/2006 Samadani
2007/0280350 Al 12/2007 Mathew et al.
2008/0013633 Al 1/2008 Ye et al.
2008/0310504 Al* 12/2008 Yeetal.c.coeeene. 375/240.02
2009/0161759 Al 6/2009 Seo et al.
2009/0324112 Al 12/2009 Park
2010/0284462 Al 11/2010 Yeetal.
2011/0200104 Al 8/2011 Korodi et al.
2011/0206117 Al 8/2011 Bivolarsky et al.
2012/0063691 Al 3/2012 Yuetal.
2012/0121010 Al 5/2012 Bordes et al.

OTHER PUBLICATIONS

Notice of Allowance issued in U.S. Appl. No. 13/334,345 on Feb. 18,
2014; 7 pages.

Office Action issued in U.S. Appl. No. 13/334,330 on May 6, 2014.
Office Action issued in U.S. Appl. No. 13/334,330 on Jul. 2,2014; 22
pages.

International Preliminary Report on Patentability issued in PCT/
CA2011/050803 on Jul. 18, 2013.

International Preliminary Report on Patentability issued in Interna-
tional Application PCT/CA2011/050805 on Jul. 18, 2013.
Canadian Office Action in Canadian Application No. 2,822,929,
dated Feb. 17, 2015, 5 pages.

International Preliminary Report on Patentability in PCT/CA2011/
050803, dated Jul. 18, 2013.

International Preliminary Report on Patentability in International
Application PCT/CA2011/050805, dated Jul. 18, 2013.

United States Office Action in U.S. Appl. No. 13/334,330, dated Nov.
26, 2013, 6 pages.

United States Notice of Allowance in U.S. Appl. No. 13/334,345,
dated Feb. 18, 2014, 7 pages.

United States Office Action in U.S. Appl. No. 13/334,330, dated May
6,2014.

United States Office Action in U.S. Appl. No. 13/334,330, dated Jul.
2, 2014, 22 pages.

Elias, Peter, “Predictive Coding—Part 1,” IRE Transactions—Infor-
mation Theory, Mar. 1955, pp. 16-24.

Marpe, Detlev, “Context-Based Adaptive Binary Arithmetic Coding
in the H.264/AVC Video Compression Standard,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 13, No. 7, Jul.
2003, pp. 620-636.

Mrak, Marta, et al., “A Context Modeling Algorithm and its Appli-
cation in Video Compression,” ICIP 2003, Sep. 14-17, pp. 1-4.
International Search Report and Written Opinion of the International
Searching Authority issued in International Application PCT/
CA2011/050803 on Mar. 23, 2012; 8 pages.

International Search Report and Written Opinion of the International
Searching Authority issued in International Application PCT/
CA2011/050805 on Mar. 13, 2012; 8 pages.

Office Action issued in U.S. Appl. No. 13/334,345 on Aug. 21, 2013,
7 pages.

* cited by examiner

U.S. Patent Dec. 22, 2015 Sheet 1 of 9 US 9,219,912 B2

100 4)

NETWORK
104

102¢

FIG. 1

US 9,219,912 B2

Sheet 2 of 9

Dec. 22, 2015

U.S. Patent

<N mv_n_ OSSO0 150 |——] SIS
BLUBI
\ A
AN pez)
&
JOPIDBId e—
sossenoid |
BoUDISIEY Y
JOBSRL0I k
wmm\ uuojsuel g9ee
BSIOAL]
A
0ge \
mwzyuenbag
A
mmm&
Y
ispoouz | JOZIUEND josse00ig |
_] Adonu . _ ULIOISURS
¥iz = d + sz mww\
mmm& w.mw& NNN\

GGe

US 9,219,912 B2

Sheet 3 of 9

Dec. 22, 2015

U.S. Patent

gic

dc¢ Ol

982
JOSS800) ERET 18poos
d e wioisuel] le— Jaznuenbs fe— Poosd
1504 Adonus
SSIBAUY
41874 \ @mmk wmmk Nmmk
JOSSAB0I
1ORIRSId B0UBIBIOY
9e J Q7 J
| eHnd <
BUIBL
mmm\
04

US 9,219,912 B2

Sheet 4 of 9

Dec. 22, 2015

U.S. Patent

GLe

VEQOOLOOLLOLLLIOO0LO00L LD --—

VE Old

i
i wadll W vl Y V2
AT 111
i) P)
M\ P Vi
%] . B X
P
<l
7

@ [GLIX e oo iy

255 J—
Zie
SNIDONT =l
f.
ONIGOONH HaddVIN
/ ﬁ {(paud Yo =1
D d d {Iid are
ﬂ.:\ L \\\ i
/ 7/
\ - \\
\ P - / \
/
\ _
S 1/
/ \ [N N)
/) EQ\ /
L 12 \
/|
o+ L ! -t f
o|lo|o]|o | ax .womV
olo|lo]|o -—
o
o|lo|l o|o AU
(o] (o] O (o] A
< o0g

ee e [nix

—i3ANE XY

HONAMEAE3Y

US 9,219,912 B2

Sheet 5 of 9

Dec. 22, 2015

U.S. Patent

80¢ ore
@ | /' /' iis
\V o o o]0 AL ety | ety | A
298 7 !
< fo) fo) fo) fo) < \\\\ \\V\ \Q WM
\ wwmw\\. %\\ 2\\ \W
Poc \ (o] (o] (o} e} - VA e
co. / (@] o] [0} (o} ¢ tﬁ\w\u
U5 , - .
99¢ _ < =
T 0%e
Gt eeslix oo folX -, 200 € SNIONZ [« }LO0DLOOLLOLELLO00LO00LLO
ONIGODIT
/ ﬁ {padd Yo = | , O-ANT XY
d ¥z
hd ~ ® \\\ 04N
/ P Y4 NOLLOIOTN
/
\ T FONIHIATY
g¢ ol A 44
\ /7
[X N) 7 \ [N N]
| pa?] 7/
V4
4
pop & be 1tz

U.S. Patent Dec. 22, 2015 Sheet 6 of 9 US 9,219,912 B2
402
4
GENERATE 400
RESIDUAL BLOCK ‘)
404 l
\| GENERATE FIRST
BLOCK OF
COEFFICIENTS
412
406 a
USE BLOGK WITHOUT
CONTEXTS? CONTEXTS

408
N GENERATE
REFERENCE
INFORMATION
410 l
N~ DETERMINE
PORTIONS OF
CODE VALUE

FIG. 4A

U.S. Patent Dec. 22, 2015 Sheet 7 of 9 US 9,219,912 B2

450

DECODE
CODE VALUES
WITHOUT
CONTEXTS

452

USE
CONTEXTSY

\ 458

454
. GENERATE

REFERENCE
INFORMATION

456 ¢
o DETERMINE

PORTIONS OF
FIRST BLOCK

460 l

\| GENERATE
RESIDUAL BLOCK

482 ¢
\J GENERATE
SECOND BLOCK

FIG. 4B

U.S. Patent Dec. 22, 2015 Sheet 8 of 9 US 9,219,912 B2

f 500

Encoder
504
~
4 Memory)
Processor s ~
Video Encoding
504 Application
v | Reference
506 Processor
238
Communications
System
508 k\ //

I

FIG. 5A

U.S. Patent Dec. 22, 2015 Sheet 9 of 9 US 9,219,912 B2
/ 550
Deacoder
554
-
Frocessor Memory
552 (" Video Encoding)
Application
g | Reference
Communications 556 Processor
System
264
560 _

!

FIG. 5B

US 9,219,912 B2

1
CODING OF RESIDUAL DATA IN
PREDICTIVE COMPRESSION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 13/334,345, filed on Dec. 22, 2011, which claims priority
to U.S. Application Ser. No. 61/429,631, filed on Jan. 4, 2011,
incorporated herein by reference.

FIELD

The present application generally relates to coding and
decoding media data (e.g., video and image coding and
decoding), and in particular to techniques for coding of
residual data in predictive compression.

BACKGROUND

Some standards for encoding and decoding videos (e.g.,
ITU-T H.264/AVC video coding standard) use block-based
coding processes. In these processes, to compress a video
sequence, which consists of several frames of pictures, a
frame is divided into blocks (e.g., 4x4, 8x8, 16x16, 32x32, or
64x64 blocks of pixel data). In this way, the task of coding the
whole video sequence is broken down into coding each block,
where blocks within a frame are coded in a certain order (e.g.,
raster order). The process of coding a block includes perform-
ing a transform (e.g., the discrete cosine transform (DCT)). In
many cases, the data being transformed is not the actual pixel
data, but is residual data following a prediction operation. For
example, to code a particular block of pixels (called the “cur-
rent block™), a prediction of the same size (called the “refer-
enceblock”) is derived based on reconstruction of a block that
was already coded according to the coding order. The refer-
ence block can come from a different frame (called “inter
prediction”) or the same frame (called “intra prediction). A
residual block is obtained by subtracting the reference block
from current block. Each residual block is transformed into a
block of transform coefficients, the transform coefficients are
optionally quantized, and the (possibly quantized) transform
coefficients are entropy encoded, yielding a bitstream.
Decoding is performed using an inverse procedure including
entropy decoding the bitstream, and de-quantizing and
inverse transforming to recover the residual block. The refer-
ence block that was used to generate the residual block at the
encoder can also be recovered at the decoder using previously
decoded data. Then the current block is reconstructed by
adding the residual block to the reference block.

The overall encoding/decoding procedure may result in
lossy compression/decompression of the video data (e.g., if
quantization is involved), however, the entropy encoding/
decoding portion of the overall procedure is lossless. In the
AVC standard, two entropy coding methods are employed in
the block-wise prediction coding architecture described
above: one is called context-adaptive binary arithmetic cod-
ing (CABAC) and the other one is called context-adaptive
variable length coding (CAVLC).

DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram of an exemplary communication
system.

FIG. 2A is ablock diagram of an exemplary video encoder.

FIG. 2B is a block diagram of an exemplary video decoder.

10

20

40

45

55

60

65

2

FIG. 3A is a schematic diagram of an exemplary encoding
procedure.

FIG. 3B is a schematic diagram of an exemplary decoding
procedure.

FIG. 4A is a flowchart of an exemplary encoding proce-
dure.

FIG. 4B is a flowchart of an exemplary decoding proce-
dure.

FIG. 5A is a block diagram of an exemplary encoder appa-
ratus.

FIG. 5B is a block diagram of an exemplary decoder appa-
ratus.

DESCRIPTION

The term “comprising” and variations thereof as used
herein are used synonymously with the term “including” and
variations thereof and are open, non-limiting terms.

FIG. 1 shows an exemplary system 100 for communicating
data, including image, video, or other media data, between
one or more nodes 101, 1024-102¢ connected over a network
104. In this example, a node 101 receives a sequence of
frames 106 from one or more sources (not shown) such as a
video camera or a video stored in a storage medium, or any
other source that can detect, derive, capture, store or record
visual information such as video or images. In some imple-
mentations, the sources may be in communication with the
node 101, or may be a part of the node 101. The node 101
includes an encoder module 108 that encodes the frames 106
to generate a stream or file of encoded video data. In this
example, the encoded video data is provided to a node 1024
coupled to the network 104. Alternatively, the node 101 may
itself be coupled to the network 104, or the encoded video
data may also or alternatively be stored locally for later trans-
mission or output, such as in a non-volatile memory or other
storage medium.

The node 102a transmits the encoded video data (e.g., as a
stream or a file) to any of a variety of other nodes 1025-102¢
(e.g., amobile device, a television, a computer, etc.) coupled
to the network 104. The node 1024 can include a transmitter
configured to optionally perform additional encoding (e.g.,
channel coding such as forward error-correction coding) and
to modulate the data onto signals to be transmitted over the
network 104. The node 1025 receives and demodulates the
signals from the network 104 to recover the encoded video
data. The node 1025 includes a decoder module 110 that
decodes the encoded video data and generates a sequence of
reconstructed frames 112. In some implementations, the node
10256 may include a display for rendering the reconstructed
frames 112. The node 1025 may include a storage medium to
store the encoded video data for later decoding including at a
time when the node 1025 is not coupled to the network 104.

The network 104 may include any number of networks
interconnected with each other. The network 104 may include
any type and/or form of network(s) including any of the
following: a wide area network (such as the Internet), a local
area network, a telecommunications network, a data commu-
nication network, a computer network, a wireless network, a
wireline network, a point-to-point network, and a broadcast
network. The network may include any number of repeaters,
appliances, devices, servers, storage media and queues.

In the description that follows, example embodiments are
described with reference to two-dimensional video coding/
decoding, however, the techniques may also be applicable to
image coding/decoding, video coding/decoding that includes
additional views or dimensions, including multiview video
coding (MVC) and three-dimensional (3D) video, extensions

US 9,219,912 B2

3

of video coding/decoding schemes such as scalable video
coding (SVC), and other media coding/decoding schemes
that use entropy coding/decoding with different contexts
associated with different portions of the data. For example,
for any type of residual data predicted from reference data, the
techniques for determining a reference data dependent con-
text for entropy coding/decoding of a portion of the residual
data can be applied for a variety of different uses of the
context in the entropy coding process.

Inthe description that follows, the terms frame and slice are
used somewhat interchangeably. For example, in the case of
the H.264 standard, a frame may contain one or more slices.
It will also be appreciated that certain encoding/decoding
operations are performed on a frame-by-frame basis and
some are performed on a slice-by-slice basis, depending on
the particular requirements of the applicable video coding
standard. In any particular embodiment, the applicable video
coding standard may determine whether the operations
described below are performed in connection with frames
and/or slices, as the case may be.

Reference is now made to FIG. 2A, which shows a block
diagram of an encoder 200 for encoding video. Reference is
also made to FIG. 2B, which shows a block diagram of a
decoder 250 for decoding video. It will be appreciated that the
encoder 200 and decoder 250 described herein may each be
implemented on an application-specific or general purpose
computing device, containing one or more processing ele-
ments and memory. The operations performed by the encoder
200 or decoder 250, as the case may be, may be implemented
by way of application-specific integrated circuit, for example,
or by way of stored program instructions executable by a
general purpose processor. The device may include additional
software, including, for example, an operating system for
controlling basic device functions.

The encoder 200 receives input data 212 from a source
(e.g.,avideo source) and produces an encoded bitstream 214.
The decoder 250 receives the encoded bitstream 214 (as input
data for the decoder 250) and outputs a decoded video frame
216. The encoder 200 and decoder 250 may be configured to
operate in conformance with a number of video compression
standards. For example, the encoder 200 and decoder 250
may be H.264/AVC compliant. In other embodiments, the
encoder 200 and decoder 250 may conform to other video
compression standards, including evolutions of the H.264/
AVC standard such as the High Efficiency Video Coding
(HEVC) standard.

The encoder 200 includes a transform processor 222, a
quantizer 224, and an entropy encoder 226. The input data
212 includes frames of spatial domain data where each frame
is organized, for example, as blocks of pixel data, which may
further be organized as “macroblocks” or “coding units” that
are made up of multiple blocks of pixel data. The blocks of
pixel data each comprise a two-dimensional array of pixel
data where each pixel represents a value (e.g., a luminance
value that represents an overall intensity, or a chrominance
value that includes color information). The transform proces-
sor 222 performs a transform upon the spatial domain data. In
particular, the transform processor 222 applies a block-based
transform to convert spatial domain data (in a spatial domain
with dimensions X and y) to spectral components in a trans-
form domain (with dimensions f, and {,, that represent spatial
frequencies). For example, in many embodiments a discrete
cosine transform (DCT) is used. Other transforms, such as a
discrete sine transform or others may be used in some
instances. The block-based transform is performed on a mac-
roblock or sub-block basis, depending on the size of the
macroblocks. In the H.264 standard, for example, a typical

10

15

20

25

30

35

40

45

50

55

60

65

4

16x16 macroblock contains sixteen 4x4 transform blocks and
the DCT process is performed on the 4x4 blocks. In some
cases, the transform blocks may be 8x8, meaning there are
four transform blocks per macroblock. In yet other cases, the
transform blocks may be other sizes (e.g., 16x16, 32x32, or
64x64 blocks, or rectangular blocks having different numbers
of pixels in the x and y dimensions in the spatial domain, and
different numbers of coefficients in the f, and f, dimensions in
the transform domain).

Applying the block-based transform to a block of pixel data
results in a set of transform domain coefficients. A “set” in
this context is an ordered set in which the coefficients have
coefficient positions (in the transform domain with dimen-
sions f, and f). In some instances the set of transform domain
coefficients may be considered a “block” or matrix of coeffi-
cients. In the description herein the phrases a “set of trans-
form domain coefficients” or a “block of transform domain
coefficients” are used interchangeably and are meant to indi-
cate an ordered set of transform domain coefficients.

The block of transform domain coefficients is quantized by
the quantizer 224. The quantized coefficients and associated
information are then encoded by the entropy encoder 226.

A predictor 236 provides a reference block for performing
prediction by subtracting the reference block from a current
block of the input data 212 being encoded. The predictor 236
includes a module to determine the appropriate coding mode,
for example, whether the frame/slice being encoded is of [, P,
or B type. Intra-coded frames/slices (i.e., type 1) are encoded
without reference to other frames/slices. In other words, they
do not employ temporal prediction. However intra-coded
frames do rely upon spatial prediction within the frame/slice.
That is, when encoding a particular block the data in the block
may be compared to the data of nearby pixels within blocks
already encoded for that frame/slice to find a similar reference
block. Using a difference processor 237 (e.g., subtraction of
respective pixel values), the pixel data of the reference block
is subtracted from the pixel data of the current block to gen-
erate a block of residual data. The transform processor 222
then converts the residual data into coefficients in the trans-
form domain. H.264, for example, prescribes nine spatial
prediction modes for 4x4 transform blocks, and HEVC pre-
scribes additional spatial prediction modes. In some embodi-
ments, multiple of the modes may be used to independently
process a block, and then rate-distortion optimization is used
to select the best mode.

Motion prediction/compensation enables the encoder 200
to take advantage of temporal prediction. Accordingly, the
encoder 200 has a feedback loop that includes a de-quantizer
228, an inverse transform processor 230, and a post-processor
232. These elements mirror the decoding process imple-
mented by the decoder 250 to reproduce the frame/slice. A
frame store 234 is used to store the reproduced frames. In this
manner, the motion prediction is based on what will be the
reconstructed frames at the decoder 250 and not on the origi-
nal frames, which may differ from the reconstructed frames
due to the lossy compression involved in encoding/decoding.
When performing motion prediction/compensation, the pre-
dictor 236 uses the frames/slices stored in the frame store 234
as source frames/slices for comparison to a current frame for
the purpose of identifying similar blocks. Accordingly, for
blocks to which motion prediction is applied, the “source
data” which the transform processor 222 encodes is the
residual data that comes out of the motion prediction process.
For example, it may include information regarding the refer-
ence frame, a spatial displacement or “motion vector,” and
residual pixel data that represents the differences (if any)
between the reference block and the current block. Informa-

US 9,219,912 B2

5

tion regarding the reference frame and/or motion vector is not
necessarily processed by the transform processor 222 and/or
quantizer 224, but instead may be supplied to the entropy
encoder 226 for encoding as part of the bitstream along with
the quantized coefficients.

The encoder 200 also includes a reference processor 238
that aids the entropy encoder 226 in generating a bitstream
214 that is more efficiently compressed than it would be
without it. For example, in some implementations, the refer-
ence processor 238 processes the reference block that was
used to generate a particular residual block and provides
reference information that the entropy encoder 226 uses to
categorize different contexts in a context model according to
spectral properties of the reference block (e.g., in addition to
a spectral position within a transform of the residual block),
as described in more detail below with reference to FIGS. 3A
and 3B. By providing multiple contexts for a given residual
block spectral position, the entropy encoding can be per-
formed more efficiently. For example, in the case of an arith-
metic code, the estimated probabilities provided by different
contexts can be estimated more accurately by accounting for
different characteristics that are evident from the reference
block. In the case of a Huffman code, the different sets of
codewords (called “codes™) provided by different contexts
can be selected in a more customized way to account for
different characteristics that are evident from the reference
block.

The decoder 250 includes an entropy decoder 252, dequan-
tizer 254, inverse transform processor 256, and post-proces-
sor 260. A frame buffer 258 supplies reconstructed frames for
use by a predictor 262 in applying spatial prediction and
motion compensation. The addition processor 266 represents
the operation of recovering the video data for a particular
reconstructed block to be supplied to the post-processor 260
from a previously decoded reference block from the predictor
262 and a decoded residual block from the inverse transform
processor 256.

The bitstream 214 is received and decoded by the entropy
decoder 252 to recover the quantized coefficients. Side infor-
mation may also be recovered during the entropy decoding
process, some of which may be supplied to the motion com-
pensation loop for use in motion compensation, if applicable.
For example, the entropy decoder 252 may recover motion
vectors and/or reference frame information for inter-coded
macroblocks. In the process of performing entropy decoding,
the decoder 250 also uses information from a reference pro-
cessor 264 to provide the same reference information that was
used in the encoder 200, which enables the entropy decoder
252 to assign contexts in the same way as the encoder 200, for
example, to adaptively estimate the same probabilities that
were used to encode symbols in the encoder in the case of
arithmetic coding, or to apply the same code in the case of
Huffman coding.

The quantized coefficients are then dequantized by the
dequantizer 254 to produce the transform domain coeffi-
cients, which are then subjected to an inverse transform by the
inverse transform processor 256 to recreate the “video data.”
In some cases, such as with an intra-coded macroblock, the
recreated “video data” is the residual data for use in spatial
compensation relative to a previously decoded block within
the frame. The decoder 250 generates the video data from the
residual data and pixel data from a previously decoded block.
In other cases, such as inter-coded macroblocks, the recreated
“video data” from the inverse transform processor 256 is the
residual data for use in motion compensation relative to a
reference block from a different frame.

20

40

45

55

6

When performing motion compensation, the predictor 262
locates a reference block within the frame buffer 258 speci-
fied for a particular inter-coded macroblock. It does so based
on the reference frame information and motion vector speci-
fied for the inter-coded macroblock. It then supplies the ref-
erence block pixel data for combination with the residual data
to arrive at the recreated video data for that macroblock.

Post-processing may then be applied to a reconstructed
frame/slice, as indicated by the post-processor 260. For
example, the post-processing can include deblocking. Certain
types of post-processing are optional and in some cases the
post-processor operates in a bypass mode to provide recon-
structed data without any post-processing (e.g., deblocking
may not be necessary after spatial compensation). After post-
processing, the frame/slice is output as the decoded video
frame 216, for example for display on a display device. It will
be understood that the video playback machine, such as a
computer, set-top box, DVD or Blu-Ray player, and/or
mobile handheld device, may buffer decoded frames in a
memory prior to display on an output device.

Reference is now made to FIG. 3A, which shows a sche-
matic diagram of an exemplary encoding procedure per-
formed by an encoder (e.g., encoder 200) that uses entropy
encoding (using any of a variety of types of lossless coding,
such as arithmetic coding or Huffman coding) with context
modeling based on information from reference blocks (e.g.,
from the reference processor 238) for encoding symbols gen-
erated from residual blocks. Alternatively, instead of entropy
encoding, other exemplary encoding procedures could use
lossy coding of coefficients of a symbols generated from
residual blocks based on a corresponding reference blocks. A
sequence of frames 300 is to be encoded. In some frames,
such as frame 302, blocks of pixels are encoded based on
similar reference blocks. In this example, a current block 304
is being encoded with respect to a reference block 306. The
reference block 306 is in the same frame 302 as the current
block 304, however, in other examples, the reference block
306 may be in a different frame from the frame 302 contain-
ing the current clock 304.

The encoder generates a residual block 308 by computing
differences between pixel values in the current block 304 and
respective pixel values in the reference block 306. The
residual block 308 has the same spatial dimensions (along the
x and y axes) as the current and reference blocks. In this
example, these blocks are 4x4 blocks, so the encoder per-
forms 16 subtraction operations to generate the residual block
308. Other block sizes may be used, but the sizes of the
current and reference blocks are generally the same (i.e., they
include the same total number of pixels and have the same
number of pixels along the x and y dimensions). Thus, in the
examples below, if other block sizes were used, the size of the
residual block and corresponding blocks would be different
(e.g., 8x8 blocks would yield 64 pixels in the residual block
and 64 coefficients in the coefficient blocks described below).

The encoder performs a transform operation on the
residual block 308 to generate a block of transform domain
coefficients. The values of the transform coefficients are
quantized (such that the values are rounded to the closest step
size of a set of quantization step sizes) to yield a block of
quantized transform coefficients 310. In some implementa-
tions, the quantization step size for each coefficient is selected
dynamically, using a quantizer that is able to apply different
step sizes to different coefficients. In the transform domain,
the transform coefficients represent points along the dimen-
sions f, and f,, corresponding to different weights of corre-
sponding spatial “basis patterns,” and the f, and f, positions of
those weights can be interpreted as spatial frequencies asso-

US 9,219,912 B2

7

ciated with those basis patterns. The encoder arranges the
values in the block of coefficients 310 in a particular one-
dimensional ordering according to a predetermined scanning
pattern over the two dimensions of the 4x4 array of coeffi-
cients 310. FIG. 3A shows an exemplary zig-zag scanning
order that can be used to generate a series of 16 coefficient
values x[0], . . ., x[15]. Thus, the position index i of a given
coefficient value x[1i] within the (two-dimensional) block of
coefficients represents a position in a one-dimensional order-
ing of the coefficients.

In order to perform entropy encoding on the coefficient
valuesx[0], . .., x[15],amapper 312 maps the values onto one
or more series of symbols. Each symbol can take on any of a
predetermined set of values. For example, in some cases the
symbols represent the lengths of zero runs and the terminat-
ing nonzero values, and in some cases (when the mapper 312
performs “binarization”) the symbols are binary symbols
(called “bins™) that take on one of two possible values (e.g.,
“0” or “1”). When generating a series of bin values from
coeflicient values x[0], . . . x[i] . . ., X[15], in some cases there
is a correspondence between bins and coefficients such that a
given bin value bin[1] is related to a corresponding coefficient
value x[1] with the same position index i in a predetermined
manner. However, the correspondence is not necessarily a
one-to-one correspondence. For example, for some values of
i there may not be a corresponding bin value, and some bin
values bin[i] may also depend on other coefficients in addi-
tion to x[i].

An entropy encoder (e.g., entropy encoder 226) then uses
an encoding engine 314 to perform entropy encoding on each
series of symbols. The encoding engine 314 accepts a series
of symbols from the mapper 312 and accepts an estimated
probability for each symbol from the reference processor 238.
The encoding engine 314 is able to encode a series of symbols
collectively as a unique binary value in a way that is revers-
ible, such that the original symbols can be recovered exactly
from that binary value. An example of such an encoding
engine 314 is an arithmetic coder. By using an estimate of the
probability that a particular one of the symbols will take on a
particular value in the coding process, an arithmetic coder is
able to represent the entire series of symbols with fewer bits
than would be necessary to represent each symbol individu-
ally as a binary value. This compression is achieved, gener-
ally speaking, because more probable symbols correspond to
shorter bit sequences within the binary value and less prob-
able symbols correspond to longer bit sequences within the
binary value. The more accurate the probability estimate is,
the more efficient the compression is.

The encoding engine 314 operates in cooperation with the
reference processor 238 to provide accurate probability esti-
mates. At the start of encoding (and at the start of decoding),
initial probability estimates are stored in storage locations
(called “contexts™) of a context data structure 316. The refer-
ence processor 238 retrieves a probability estimate p(j) stored
atalocation in the data structure 316 given by a context index
j- The reference processor 238 determines the context index j
for a given bin value bin[i] corresponding to a position index
i as a function of a prediction pred based on reference infor-
mation and the coefficient position i, such that the context
index j=c(i, pred) has multiple possible values for a given
value of i. Therefore, there are multiple possible probability
estimates p(j) stored for a given value of i. In this example
shown in FIG. 3 A, there are four possible values ofj for each
value of i. Therefore, the reference processor 238 can retrieve
any one of four possible values of a previously updated prob-
ability estimate for a given value of i, depending on the
prediction pred. The reference information used to determine

10

25

40

45

8

the prediction pred is based on the reference block 306 that
was used to generate the residual block 308 for the current
block of coefficients 310 being encoded, as described in more
detail below.

Different probability estimates stored at different context
indices are separately updated for successive residual blocks
to provide more accurate estimates as based on past history as
more residual blocks of a frame or series of frames are
encoded. The encoding engine 314 overwrites the previous
probability estimate p(j) with an updated probability estimate
p'(G) computed based on the current bin value being encoded
and the previous probability estimate p(j) (retlecting any past
bin values). Because the context index j depends on reference
block prediction information, the updated probability esti-
mate also depends on reference block prediction information.
The next time a particular updated probability is used, it
represents an estimated probability that is conditioned on
both information about previously coded bin values and ref-
erence information. Optionally, different values of j can be
computed for different values of other auxiliary information
(e.g., the type of frame or block or bin value being encoded)
by providing an offset that is added to the context index j that
depends on that auxiliary information. An exemplary proce-
dure for updating the probability estimates is described in
more detail in Marpe et al. “Context-Based Adaptive Binary
Arithmetic Coding in the H.264/AVC Video Compression
Standard,” IEEE Transactions on Circuits and Systems for
Video Technology, Vol. 13, No. 7, July, 2003, incorporated
herein by reference. For other types of coding (e.g., lossless
coding schemes such as Huffman coding or other entropy
coding schemes, or lossy coding schemes) the coding infor-
mation stored at various locations in the context data structure
316 does not necessarily need to be updated to take into
account past history of previously encoded (or decoded) sym-
bols.

In some implementations, the encoding engine 314 can use
binary arithmetic coding (BAC) along with a binarization
process performed by the mapper 312 in which the coefficient
values x[0], . . ., x[15] are mapped into multiple different
series of bins, including a “significance map” representing the
non-zero coefficient values, a “last map” representing the
position of the last non-zero coefficient, and a Unary/kth
order Exp-Golomb binarization of absolute values of non-
zero coetficients. To code each series of bins provided by the
mapper 312, the encoding engine 314 can use a binary arith-
metic code to generate a bitstream representing the bins, and
a probability estimator to update probability estimates stored
in the context data structure 316. As described above, each
particular bin value is used by the encoding engine 314 (or a
corresponding decoder) based on an a priori estimate of the
probability of a particular bin taking on that particular value,
where an adaptive arithmetic code allows this probability to
be estimated on the fly. A probability estimator can be imple-
mented as a Laplace estimator, a Kirchevsky-Trofimov esti-
mator, or a finite-state machine, for example. For a finite-state
implementation of a probability estimator, the probability is
quantized to be one of a finite set of possible values (e.g., 64
possible values) and indexed by a state s, and probability
estimation is performed based on state transitions. The state
determines the probability estimates of the two possible sym-
bols (in the case of binary bin values) and the next state
depends on the value of the symbol most recently encoded (or
decoded). In the following example, there are 64 possible
states enumerated by s=0 . . . 63, each associated with a
corresponding probability value p, . . . pss, Where p,=0.5,
ps=0. p,_;, and a is a number close to but less than one (e.g.,
a~0.95). The probability of the least probable symbol (LPS)

US 9,219,912 B2

9

(e.g., either “0” or “1” for a binary bin value) is p, and the
probability of the most probable symbol (MPS) is 1-p,. In
this example, the probability p, gets closer to O as s gets closer
to the largest value (63), and p, gets closer to 0.5 as s gets
closer to the smallest value (0). So in the state s=0, (the
“equiprobable state”) the two possible symbol values are
equally probable. Exemplary state transition vectors to tran-
sition to a next state s (given by the value in the vector) from
aprevious state s (used to index into the vector), according to
the value of the most recently encoded (or decoded) symbol,
are shown below.

If the most recently encoded (or decoded) symbol is the
MPS, the transition vector is NextStateMPS[s]:

11,2,3,4,5,6,7,8,

9,10,11,12,13,14,15,16,

17,18,19,20,21,22,23,24,

25,26,27,28,29,30,31,32,

33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47 48,

49,50,51,52,53,54,55,56,

57,58,59,60,61,62,62,63}

If the most recently encoded (or decoded) symbol is the
LPS, the transition vector is NextStateLPS[s]:

10,0,1,2,2,4,4,5,

6,7,8,9,9,11,11,12,

13,13,15,15,16,16,18,18,

19,19,21,21,22,22,23,24,

24,25,26,26,27,27,28,29,

29,30,30,30,31,32,32,33,

33,33,34,34,35,35,35,36,

36,36,37,37,37,38,38,63}

So in this example, if the MPS is received, the probability
estimate for receiving the MPS again increases until the last
two states (s=62 or 63) in which case the probability estimate
for receiving the MPS stays the same. If the LPS is received,
the probability estimate for receiving the MPS decreases for
most states except for the first and last states (s=0 or 63). If the
current state is the equiprobable state and the LPS is received,
the symbol values of the MPS and LPS are interchanged,
otherwise, the symbol values of the MPS and LPS stay the
same for all the other state transitions. Using a probability
estimation procedure such as the procedure described above
enables the probability estimate to depend on the values of
past encoded (or decoded) symbols. Storing and updating
probability estimates in different contexts (with different con-
text indices), enables the probability estimates to also depend
oninformation used to determine the contexts associated with
the past symbols. Thus, by selecting different context indices
for different values of selected reference information, the
probability estimates can be made to depend on the selected
reference information.

In other implementations, the encoding engine 314 can use
other type of codes (other than an arithmetic code), such as a
Huffman code or a variable-length-to-variable-length code.
The other types of codes also use different contexts associated
with different symbols for encoding a series of symbols. For
example, in Huffman coding, instead of storing probability
estimates, the contexts at different context indices store infor-
mation for applying different codes for different symbols.
Some codes may enable more efficient encoding for a symbol
having a certain value of the prediction pred derived from
reference information associated with that symbol.

To take advantage of the correlation between the reference
block 306 and the residual block 308 (and the resulting bin
value being encoded), the encoding engine 314 can determine
coding information (e.g., the probability estimates for arith-
metic coding or the code for Huffman coding) based in part on

10

15

20

25

30

35

40

45

50

55

60

65

10

reference information derived from the reference block 306.
Any of a variety of techniques can be used to process the
reference block 306 (e.g., using the reference processor 238)
to generate reference information that is used by the encoding
engine 314. For example, reference block prediction coeffi-
cients r[0], . . ., r[15] can be derived by applying the same
transformation and quantization on reference block 306 that
was applied to the residual block 308. In this example, there
are 16 reference block prediction coefficients since the refer-
ence block 306 has the same number of pixels (16) as the
residual block 308. The position index i associated with each
reference block prediction coefficient r[i] can be determined
using the same zig-zag scanning order used to determine the
coefficient values x[0], . . ., X[15]. The computed reference
block prediction coefficients r[i] can then be used in any of a
variety of ways in the entropy coding (and decoding) process.
In examples below, the context index j for a bin symbol is
computed as a function of all the encoded history and the
reference information (e.g., some function of the reference
block prediction coefficients r[0], . . ., r[15]).

To encode a bin value bin[i] at a particular position index 1,
two different examples of possible context index computa-
tions are as follows:

j=4i+min(log,(numPredSig+1),3)

J=4i+min(logy(rfiJ+1),3)

where numPredSig represents the number of non-zero coef-
ficients in r[0], . . ., r[15], and r[i] is the value of prediction
coefficient at the corresponding position index i. The bit-
stream resulting from the encoding process is decodable at a
decoder that uses the same coding information stored in a
corresponding context data structure using the same proce-
dures for determining context indices. For example, in the
case of arithmetic coding, the decoder is able to use the same
initial probability estimates and the same procedure for
updating probability estimates since the same reference block
prediction coefficients r[0], . . ., [15] can be generated at the
decoder (using the reference processor 264) by performing a
transform and quantization on a reference block recovered
from encoded data received at the decoder (e.g., a reference
block generated by adding a different reference block to a
decoded residual block).

Reference is now made to FIG. 3B, which shows a sche-
matic diagram of an exemplary decoding procedure per-
formed by decoder (e.g., decoder 250) that uses entropy
decoding with context modelling based on information from
reference blocks for decoding symbols used to recover
residual blocks. For example, to decode an encoded bit
sequence to recover a bin value bin[i] at a particular position
index i, the reference processor 264 can use the same proce-
dure used in the encoder (by reference processor 238) to
determine the context for bin[i] (at the context index j=c(i,
pred)), and the coding information (e.g., estimated probabil-
ity p(j)) associated with that context. The prediction pred is
derived, for example, from reference information from a pre-
viously decoded reference block 360. An entropy decoder
(e.g., entropy decoder 252) uses a decoding engine 350 to
perform entropy decoding on a bitstream to recover a series of
symbols, for example, a series of bins. The first bin for a
particular sequence of bin values representing a residual
block to be decoded is the bin that was first encoded at the
encoder bin[0]. In the case of arithmetic coding, at the start of
the decoding the initial probability estimates are the same
initial probability estimate that were used at the encoder.

US 9,219,912 B2

11

After bin[i] is decoded, the probability estimate associated
with the context used is updated by using the same probability
estimation procedure as used in the encoder, where an exem-
plary procedure uses the finite state machine used for BAC
described above. The decoding engine 350 is able to deter-
mine subsequent bin values bin[i] in a sequence of bin values
from previously decoded bin values bin[0] . . . bin[i-1], the
corresponding probability estimate p(j), and the encoded bit
sequence representing the residual block being decoded. The
decoder is able to decode subsequent sequences of bin values
bin[i] (e.g., for subsequent residual blocks) using the updated
probability estimates.

The recovered series of symbols is then inverse mapped by
a demapper 356 (e.g., by performing de-binarization) to gen-
erate the coefficient values x[0], . . ., x[15]. The block of
quantized transform coefficients 310 is then recovered
according to the same scanning order used at the encoder.
After applying inverse quantization and an inverse transform,
the residual block 308 is recovered. At the decoder, the recov-
ered residual block 308 is added to the reference block 360 to
yield the reconstructed block 362. In this example, the recon-
structed block 362 is being decoded with respect to a refer-
ence block 360 in the same frame 364 as the reconstructed
block 362, however, in other examples, the reference block
360 may be in a different frame from the frame 364 contain-
ing the reconstructed block 362 (e.g., an other previously
decoded frame in a sequence of decoded frames 366).

In an example based on BAC, to encode the coefficients
x[0], ..., x[15], the mapper 312 first generates multiple series
of bins representing different characteristics of the coeffi-
cients from which the coefficients can be reconstructed. For
example, two of the series of bins are: a significance map
sig[0], .. ., sig[15], and a last map last[0], . . ., last[15], where
for any j, sig[j]=(x[j] !=0) and last[j]=(G==L,), where L,
denotes the position of the last non-zero coefficient in
x[0], . . ., x[15]. Other series of bins include a “greater than
one map” which indicates whether a coefficient’s absolute
value is greater than one, and various “level maps” that indi-
cate whether a coefficient’s absolute value is greater than a
particular level. Some of the series of bins (not necessarily all
of them) are losslessly encoded by the encoding engine 314.

An exemplary procedure that can be used by the encoding
engine 314 for performing arithmetic coding to encode the
significance and last maps using contexts to store adaptively
updated probability estimates is as follows.

for (i=0; i < 15; i++)

assign context to estimate the probability for encoding sig[i];
if (sig[i] ==1)
{

assign context to estimate the probability for encoding last[i];
terminate the encoding of the significance map if (i==L,);
¥
¥

An exemplary procedure that can be used by the encoding
engine 314 for performing arithmetic coding to encode the
“greater than one” and level maps of significant coefficients
after the encoding of the significance and last maps is as
follows.

cl =1;c2=0;
for (i=L,; i >=0; i--)

if (sigli]==1)
{

30

40

45

50

55

60

65

12

-continued

assign context to encode (abs(x[i])==1);

if (abs(x[i]) > 1)

{

cl=0;

assign context to encode the level of x[i]-2;
C2++;

}else

{

if (el > 0)

cl++;

The steps of assigning a context for encoding a given value
are performed using the reference processor 238, and the
steps of estimating updated probabilities to be associated with
the assigned context are performed using the probability esti-
mator 316, as described above.

Additional examples of possible context index computa-
tions for the different series of bin values, including offsets
associated with different series of bin values, are as follows.

j = ctx_sig_ offset + 4i + min(log, (r[i]+1), 3) for sig]i]

for last[i]

j = ctx_greone_ offset + 4min(cl,4) + min(log,(t[i]+1), for

3) (abs(x[i])==1)
j = context__level offset + 4min(c2,4) + for level of
min(log,(r[i]+1), 3) x[i]-2

j=ctx_last_offset + 4i + min(log,(numPredSig+1), 3))

The following tables show exemplary values of a quantized
4x4 transform coefficient block generated from a particular
residual block, and a corresponding prediction coefficient
block generated from the reference block that was used to
generate the particular residual block. The following example
illustrates various operations in an encoding procedure that
uses some of the techniques described herein.

Coefficient Block

-16 -1 0 0

_4 0 0 0

0 1 0 0

-1 1 0 0
Prediction Coefficient Block

49 0 0 0

-4 0 0 0

-1 0 0 0

-2 0 0 0

The following table shows values of the position index, the
absolute values of the residual transform coefficients, the
signs of the residual transform coefficients, and the prediction
coefficients.

US 9,219,912 B2

Zigzag scan
index o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
Ix| 6 1 4 0 0 0 0 0 1 1 1 0 0 0 0 0
sign - - - + -+
pred 49 0 4 1 0 0 0 0 0 2 0 0 0 0 0 0
The signs can be encoded separately without context prob- 10 (0,sig_p[4*7+0])—arithmetic code engine—update sig_p

ability estimates. Therefore, only the absolute values of the
residual transform coefficients will be considered in this
example.

The following table additionally shows values of the sig-
nificance map and the last map in their corresponding index
positions.

15

[4*7+0]
(1,sig_p[4*8+0])—arithmetic code engine—update sig_p
[4%8+0]

(0,last_p[4*8+2])—arithmetic
last_p[4*8+2]

code engine—update

Significance and Last maps

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x| 6 1 4 0 0 0 0 0 1 1 1 0 0 0 0 O
pred 49 0 4 1 0 0 0 0 0O 2 0 0 0 0 0 O
sig 1 1 1 0 0 0 0 0 1 1 1
last 0 0 0 0o 0 1

Some index positions for these maps do not have corre-
sponding values if those values are not needed to fully repre-
sent the information in the map. For example, only those
index positions with a value of sig=1 have a last map value,
since the meaning of the last map is whether the correspond-
ing value is the last non-zero coefficient.

To encode the significance map, the context index j for
retrieving the probability estimate p(j)=sig_p[j] is: j=4*i+min
(floor(log,(r[i]+1)),3).

To encode the last map, the context index j for retrieving the
probability estimate p(j)=last_p[j] is: j=4*i+min(floor(log,
(numPredSig+1)),3).

In this example, the number of non-zero coefficients in the
prediction coefficient block is given by numPredSig=4.

The significance and last maps can then be encoded using
the following sequence of operations, where each row repre-
sents a different value of i for one of the maps, and includes
providing the pair of values (map[i], p(j)) to an arithmetic
code engine (e.g., implemented using the encoding engine
314) and updating the probability p(i):

(1,sig_p[4*0+3])—arithmetic code engine—update sig_p
[4%0+3]

(0,last_p[4*0+2])—arithmetic
last_p[4*0+2]

(1,sig_p[4*1+0])—=arithmetic code engine—update sig_p
[4*1+0]

(0,last_p[4*1+2])—=arithmetic
last_p[4*1+2]

(1,sig_p[4*2+2])—>arithmetic code engine—update sig_p
[4%2+2]

(0,last_p[4*2+2])—>arithmetic
last_p[4*2+2]

(0,sig_p[4*3+0])—=arithmetic code engine—update sig_p
[4%3+0]

(0,sig_p[4*4+0])—=arithmetic code engine—update sig_p
[4*4+0]

(0,sig_p[4*5+0])—=arithmetic code engine—update sig_p
[4%5+0]

(0,sig_p[4*6+0])—=arithmetic code engine—update sig_p
[4%6+0]

code engine—update

code

engine—update

code engine—update

30

35

40

45

50

55

60

65

(1,sig_p[4*9+1])—arithmetic code engine—update sig_p
[4%9+1]

(0,last_p[4*9+42])—=arithmetic code engine—update
last_p[4*9+2]

(1,sig_p[4*10+0])—=arithmetic code engine—update
sig_p[4*10+0]

(1,last_p[4*10+2])—>arithmetic code engine—update

last_p[4*10+42]

FIG. 4A shows a flowchart for an exemplary encoding
procedure 400 for encoding input data, which may be part of
aprocedure performed by an encoder (e.g., encoder 200) that
includes additional steps not shown. The procedure 400
includes generating (402) a first block of coefficients (e.g.,
x[0],...,x[15]) based on a transform performed on a residual
block of data for multiple pixels. The encoder determines
(404) whether symbols representing the first block of coeffi-
cients are to be encoded using different contexts for different
symbols based on reference information. If so, then the
encoder generates (406) reference information based on a
reference block of data corresponding to the residual block of
data; and determines (408) losslessly decodable code values
representing the first block of coefficients based on the refer-
ence information. If not, then the encoder encodes (410) the
first block of coefficients without using different contexts for
different symbols based on reference information.

FIG. 4B shows a flowchart for an exemplary decoding
procedure 450 for decoding encoded input data including one
or more code values, which may be part of a procedure per-
formed by an decoder (e.g., decoder 250) that includes addi-
tional steps not shown. The decoder determines (452)
whether the code values are to be decoded into symbols for a
first block of coefficients (e.g., x[0], . . ., x[15]) using differ-
ent contexts for different symbols based on reference infor-
mation. If so, then the decoder generates (454) reference
information (e.g., r[0], . . ., r[15]) based on a reference block
of data corresponding to a residual block of data, and loss-
lessly decodes (456) code values to generate a first block of
coefficients based on the reference information. If not, then
the decoder decodes (458) the code values without using
different contexts for different symbols based on reference

US 9,219,912 B2

15

information. The procedure 450 also includes generating
(460) the residual block of data based on an inverse-transform
performed on the first block of coefficients, and generating
(462) a block of data for multiple pixels in a reconstructed
frame based on a sum of the reference block of data and the
residual block of data.

Reference is now made to FIG. 5A, which shows a simpli-
fied block diagram of an example embodiment of an encoder
500. The encoder 500 includes a processor 502, a memory
504 accessible by the processor 502, and an encoding appli-
cation 506. The encoding application 506 may include a
computer program or application stored in the memory 504
and containing instructions for configuring the processor 502
to perform steps or operations such as those described herein.
The encoding application 506 may include one or more com-
ponents or modules for performing various aspects of the
techniques described herein. For example, a reference pro-
cessor 238, as described herein, can be included as a module
of the encoding application 506. The encoding application
506, or any of its modules, may be stored in any combination
of the memory 504 of the encoder 500, and any other acces-
sible computer readable storage medium, such as a compact
disc, flash memory device, random access memory, hard
drive, etc. The encoder 500 also includes a communications
interface 508 accessible by the processor 502 to transmit a
bitstream comprising encoded video data generated by the
processor 502 executing the encoding application 506.

Reference is now also made to FIG. 5B, which shows a
simplified block diagram of an example embodiment of a
decoder 550. The decoder 550 includes a processor 552, a
memory 554, and a decoding application 556. The decoding
application 556 may include a computer program or applica-
tion stored in the memory 554 and containing instructions for
configuring the processor 552 to perform steps or operations
such as those described herein. The decoding application 556
may include one or more components or modules for per-
forming various aspects of the techniques described herein.
For example, a reference processor 264, as described herein,
can be included as a module of the decoding application 556.
The reference processor 264 is configured to perform com-
putations corresponding to those performed by the reference
processor 238 that was used to encode the video data that is
being decoded. For example, the reference processor 264
adaptively updates the context model including the estimated
probabilities stored in the contexts for performing arithmetic
decoding, based in part on information from reference blocks,
as described herein. The decoding application 556, or any of
its modules, may be stored in any combination of the memory
554 of the decoder 550, and any other accessible computer
readable storage medium, such as a compact disc, flash
memory device, random access memory, hard drive, etc. The
decoder 550 also includes a communications interface 560
accessible by the processor 552 to receive a bitstream com-
prising encoded video data to be decoded by the processor
552 executing the decoding application 556.

The decoder and/or encoder may be implemented in a
number of computing devices, including, without limitation,
servers, suitably programmed general purpose computers,
set-top television boxes, television broadcast equipment, and
mobile devices. The decoder or encoder may be implemented
by way of software containing instructions for configuring a
processor to carry out the functions described herein. The
software instructions may be stored on any suitable com-
puter-readable memory, including CDs, RAM, ROM, Flash
memory, etc.

It will be understood that the encoder described herein and
the module, routine, process, thread, or other software com-

10

15

20

25

30

35

40

45

50

55

60

65

16

ponent implementing the described method/process for con-
figuring the encoder may be realized using standard computer
programming techniques and languages. The techniques
described herein are not limited to particular processors, com-
puter languages, computer programming conventions, data
structures, or other such implementation details. The
described processes may be implemented as a part of com-
puter-executable code stored in volatile or non-volatile
memory, as part of an application-specific integrated chip
(ASIC), etc.

In one aspect, in general, encoding input data includes:
generating a first block of coefficients based on a transform
performed on a residual block of data for multiple pixels;
generating reference information based on a reference block
of'data corresponding to the residual block of data; and deter-
mining losslessly decodable code values representing the first
block of coefficients based on the reference information.

Aspects can include one or more of the following features.

For example, determining losslessly decodable code val-
ues representing the first block of coefficients based on the
reference information may include determining portions of a
code value representing respective portions of the first block
of coefficients based on at least one value derived from at least
a portion of the reference information. Determining the por-
tions of the code value representing respective portions of the
first block of coefficients based on at least one value derived
from at least a portion of the reference information may
include determining the portions based on respective esti-
mated probabilities estimated according to: one or more pre-
viously determined code values, and the at least one value.

The estimated probability for determining a first portion of
the code value is based on a value stored in a data structure at
a location identified by an index that depends on: a position
within the first block of coefficients, and the at least one value.
The position within the first block of coefficients comprises a
position in a one-dimensional ordering of the coefficients in
the first block of coefficients. A value stored at a first location
in the data structure may be updated based on: a value previ-
ously stored at the first location associated with the one or
more previously determined code values, and a value of a
symbol representing a portion of the first block of coeffi-
cients. The estimated probability for determining a first por-
tion of the code value may include a conditional probability
that a symbol representing a portion of the first block of
coefficients has a particular symbol value given the one or
more previously determined code values and the at least one
value.

The symbol representing a portion of the first block of
coefficients may include a binary symbol determined accord-
ing to a value of a coefficient in the first block of coefficients
in a particular position with respect to a transform domain of
the transform performed on the residual block. The reference
information based on the reference block of data may include
asecond block of coefficients based on a transform performed
on the reference block of data. The at least one value accord-
ing to which a particular probability is being estimated may
include a value based on a coefficient in the second block of
coefficients that has a position within the second block of
coefficients that corresponds to a position of a coefficient
within the first block of coefficients for which the particular
probability is being estimated.

The at least one value may include a value based on a
number of non-zero coefficients in the second block of coef-
ficients. Generating the first block of coefficients based on a
transform performed on the residual block may include quan-
tizing values resulting from the transform. Generating the
second block of coefficients based on a transform performed

US 9,219,912 B2

17

on the reference block of data may include quantizing values
resulting from the transform. The respective portions of the
first block of coefficients may include a series of symbols,
with each symbol having a value determined by at least one
coefficient of the first block of coefficients.

The symbols are binary symbols each having one of two
possible values. The respective portions of the first block of
coefficients may include a series of symbols, with each sym-
bol having a value determined by at least one coefficient of the
first block of coefficients. The code value representing the
respective portions of the first block of coefficients may
include an arithmetic code value generated based on the series
of'symbols and the respective estimated probabilities. Each of
the series of symbols has a symbol value that is associated
with a corresponding one of the respective estimated prob-
abilities. A set of codewords for losslessly decoding at least
one of the code values is based on information stored in a data
structure at a location identified by an index that depends on:
aposition within the first block of coefficients, and the at least
one value.

The position within the first block of coefficients includes
aposition in a one-dimensional ordering of the coefficients in
the first block of coefficients. The losslessly decodable code
values are determined using a coding scheme selected from
the group consisting of: arithmetic coding, and Huffman cod-
ing.

In another aspect, in general, decoding encoded input data
including one or more code values includes: generating ref-
erence information based on a reference block of data corre-
sponding to a residual block of data; losslessly decoding code
values to generate a first block of coefficients based on the
reference information; generating the residual block of data
based on an inverse-transform performed on the first block of
coefficients; and generating a block of data for multiple pixels
in areconstructed frame based on a sum of the reference block
of data and the residual block of data.

Aspects can include one or more of the following features.
For example, losslessly decoding code values to generate a
first block of coefficients based on the reference information
may include determining portions of a first block of coeffi-
cients based on respective portions of a received code value
and at least one value derived from at least a portion of the
reference information. Determining the portions of the first
block of coefficients based on respective portions of a
received code value and at least one value derived from at
least a portion of the reference information may include deter-
mining the portions based on respective estimated probabili-
ties estimated according to: one or more previously decoded
code values, and the at least one value.

The estimated probability for determining a first portion of
the first block of coefficients is based on a value stored in a
data structure at a location identified by an index that depends
on: a position within the first block of coefficients, and the at
least one value. The position within the first block of coeffi-
cients may include a position in a one-dimensional ordering
of the coefficients in the first block of coefficients.

A value stored at a first location in the data structure may be
updated based on: a value previously stored at the first loca-
tion associated with the one or more previously decoded code
values, and a value of a symbol representing the first portion
of'the first block of coefficients. The estimated probability for
determining a first portion of the first block of coefficients
comprises a conditional probability that a symbol represent-
ing the first portion of the first block of coefficients has a
particular symbol value given the one or more previously
decoded code values and the at least one value. The symbol
representing the first portion of the first block of coefficients

20

30

40

45

60

18

may include a binary symbol determined according to a value
of'a coefficient in the first block of coefficients in a particular
position with respect to a transform domain of the first block
of coefficients. The reference information may be based on
the reference block of data comprises a second block of
coefficients based on a transform performed on the reference
block of data. The at least one value according to which a
particular probability is being estimated may include a value
based on a coefficient in the second block of coefficients that
has a position within the second block of coefficients that
corresponds to a position of a coefficient within the first block
of coefficients for which the particular probability is being
estimated.
The at least one value may include a value based on a
number of non-zero coefficients in the second block of coef-
ficients. A set of codewords for losslessly decoding at least
one of the code values is based on information stored in a data
structure at a location identified by an index that depends on:
aposition within the first block of coefficients, and the at least
one value. The position within the first block of coefficients
may include a position in a one-dimensional ordering of the
coefficients in the first block of coefficients.
The code values are decoded using a coding scheme
selected from the group consisting of: arithmetic coding, and
Huffman coding.
Aspects can have one or more of the following advantages.
Before the entropy encoding process, the quantized trans-
form coefficients are represented as a series of symbols (e.g.,
binary symbols). A context model enables a current symbol to
be encoded according to a probability estimated based on
contextual information derived from previously encoded
video data. The contextual information can be stored in a
number of contexts (e.g., each context can correspond to a
different storage location in a data structure). In order to
achieve high compression efficiency in the entropy encoding,
it is helpful to use a large amount of contextual information to
estimate the probability. However, when the number of con-
texts is large in comparison to available data, a potential
problem called “context dilution” may significantly degrade
the compression efficiency. Context dilution may result, for
example, from avoiding a probability estimate of zero in some
coding techniques. In a typical case of video compression, the
quantized transform coefficients may vary greatly in size and
range, posing potential challenges in designing an efficient
context model. The techniques described herein facilitate
balancing the number of contexts and the compression effi-
ciency.
Other features and advantages of the invention are apparent
from the present description, and from the claims.
Certain adaptations and modifications of the described
embodiments can be made. Therefore, the above discussed
embodiments are considered to be illustrative and not restric-
tive.
What is claimed is:
1. A method for encoding input data, the method compris-
ing:
generating a first block of coefficients based on a transform
performed on a residual block of data for multiple pixels;

generating reference information based on a reference
block of data corresponding to the residual block of data;
and

computing losslessly decodable code values representing

the first block of coefficients based on the reference
information, wherein computing losslessly decodable
code values comprises determining portions of a code
value representing respective portions of the first block
of coefficients based on at least one value derived from at

US 9,219,912 B2

19

least a portion of the reference information, and wherein
determining the portions of the code value comprises
determining the portions based on respective estimated
probabilities or codes determined according to the at
least one value.

2. The method of claim 1, wherein the estimated probabili-
ties determined according to the at least one value are also
determined according to one or more previously decoded
code values.

3. The method of claim 2, wherein the estimated probabil-
ity for determining a first portion of the code value is based on
avalue stored in a data structure at a location identified by an
index that depends on: a position within the first block of
coefficients, and the at least one value.

4. The method of claim 3, wherein the position within the
first block of coefficients comprises a position in a one-di-
mensional ordering of the coefficients in the first block of
coefficients.

5. The method of claim 3, further comprising updating a
value stored at a first location in the data structure based on: a
value previously stored at the first location associated with the
one or more previously decoded code values, and a value of a
symbol representing a portion of the first block of coeffi-
cients.

6. The method of claim 2, wherein the estimated probabil-
ity for determining a first portion of the code value comprises
a conditional probability that a symbol representing a portion
of'the first block of coefficients has a particular symbol value
given the one or more previously decoded code values and the
at least one value.

7. The method of claim 6, wherein the symbol representing
a portion of the first block of coefficients comprises a binary
symbol determined according to a value of a coefficient in the
first block of coefficients in a particular position with respect
to a transform domain of the transform performed on the
residual block.

8. The method of claim 1, wherein the reference informa-
tion based on the reference block of data comprises a second
block of coefficients based on a transform performed on the
reference block of data.

9. The method of claim 8, wherein the at least one value
according to which a particular probability is being estimated
comprises a value based on a coefficient in the second block
of coefficients that has a position within the second block of
coefficients that corresponds to a position of a coefficient
within the first block of coefficients for which the particular
probability is being estimated.

10. The method of claim 8, wherein the at least one value
comprises a value based on a number of non-zero coefficients
in the second block of coefficients.

11. The method of claim 8, wherein generating the second
block of coefficients based on a transform performed on the
reference block of data comprises quantizing values resulting
from the transform.

12. The method of claim 1, wherein generating the first
block of coefficients based on a transform performed on the
residual block comprises quantizing values resulting from the
transform.

13. The method of claim 1, wherein the respective portions
of'the first block of coefficients comprise a series of symbols,
with each symbol having a value determined by at least one
coefficient of the first block of coefficients.

10

15

20

30

35

40

45

50

55

60

65

20

14. The method of claim 13, wherein the symbols are
binary symbols each having one of two possible values.

15. The method of claim 1, wherein the respective portions
of'the first block of coefficients comprise a series of symbols,
with each symbol having a value determined by at least one
coefficient of the first block of coefficients.

16. The method of claim 15, wherein the code value rep-
resenting the respective portions of the first block of coeffi-
cients comprises an arithmetic code value generated based on
the series of symbols and the respective estimated probabili-
ties.

17. The method of claim 15, wherein each of the series of
symbols has a symbol value that is associated with a corre-
sponding one of the respective estimated probabilities.

18. The method of claim 1, wherein a set of codewords for
losslessly decoding at least one of the code values is based on
information stored in a data structure at a location identified
by an index that depends on: a position within the first block
of coefficients, and the at least one value.

19. The method of claim 18, wherein the position within
the first block of coefficients comprises a position in a one-
dimensional ordering of the coefficients in the first block of
coefficients.

20. The method of claim 1, wherein the losslessly decod-
able code values are computed using a coding scheme
selected from the group consisting of: arithmetic coding, and
Huffman coding.

21. A non-transitory computer readable medium storing a
computer program for encoding input data, the computer
program including instructions for causing a computer sys-
tem to:

generate a first block of coefficients based on a transform
performed on a residual block of data for multiple pixels;

generate reference information based on a reference block
of data corresponding to the residual block of data; and

compute losslessly decodable code values representing the
first block of coefficients based on the reference infor-
mation, wherein computing losslessly decodable code
values comprises determining portions of a code value
representing respective portions of the first block of
coefficients based on at least one value derived from at
least a portion of the reference information, and wherein
determining the portions of the code value comprises
determining the portions based on respective estimated
probabilities or codes determined according to the at
least one value.

22. An apparatus for encoding input data, the apparatus
comprising:
a memory configured to buffer one or more frames recon-
structed from the input data; and

at least one processor coupled to the memory and config-

ured to process the input data based on the one or more

frames buffered in the memory, the processing includ-

ing:

generating a first block of coefficients based on a trans-
form performed on a residual block of data for mul-
tiple pixels;

generating reference information based on a reference
block of data corresponding to the residual block of
data; and

US 9,219,912 B2
21

computing losslessly decodable code values represent-
ing the first block of coefficients based on the refer-
ence information, wherein computing losslessly
decodable code values comprises determining por-
tions of a code value representing respective portions 5
of the first block of coefficients based on at least one
value derived from at least a portion of the reference
information, and wherein determining the portions of
the code value comprises determining the portions
based on respective estimated probabilities or codes 10
determined according to the at least one value.

#* #* #* #* #*

22

